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1. Introduction

Automata theory is a mathematical theory to
investigate behavior, structure and their relationship
to discrete and digital systems such as algorithms,
nerve nets, digital circuits, and so on. The first
investigation of automata theory goes back to A. M.
Turing in 1936 for the formulation of the informal
idea of algorithms. Finite automata model the
discrete and digital systems with finite "memory”,
for example, digital circuits. The theory of finite
automata has received considerable attention and
found applications in areas of computer,
communication, automatic control, and biology,
since the pioneering works of Kleene et al. (1956).
Among others, autonomous finite automata
including shift registers are used to generate
pseudo-random sequences, and finite automata with
invertibility are used to model encoders and
decoders for error correcting and cipher as well as to
solve topics in pure mathematics such as the
Burnside problem for torsion groups (Tao, 2007;
Even, 1965; Kleene, 1956; Kurmit, 1974).

It can be considered as a natural model of
cryptosystems. Since up to now, in studying the
cryptosystem based on automata, the invertibility of
finite automata has a main role, for example in
studying the public key cryptosystem FAPKC3 and
FAPKC4, we can observe this (Tao et al, 1997; Tao
and Chen, 1999). All of these cryptosystems based on
invertibility theory of finite automaton, in which
their securities rest on the difficulties of inversion of
nonlinear finite automata. For more information
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about the invertibility of finite automata, the reader
may be referred to (Tao and Chen, 2000; Bao, 1993;
Bao et al,, 1996; Chen, 1981; Chen, 1986; Chen and
Tao 1987; Chen and Tao, 1992; Dai, 1994; Dai and
Ye, 1995; Gao and Bao, 1994; Lu, 1991).

Now in this paper first we introduce the finite k-
tray automata, which is a generalization of finite
automata, and then we give different compositions
between any two finite k-tray automata. After that
we present some theorems related to complex
inverse finite k-tray automata and complex ivertible
finite k-tray automata.

The main purpose of this work is to give the
generalization of automata. We will introduce
cryptosystems based on this generalization in the
future works in which the security is greater than
before ones.

2. Preliminaries

As usual, for a finite set X, we denote by X" the
set of words of length n, with n € N,, and X° = {g},
where € denotes the empty word. We will also use
X* =Upso X™, the set of all finite words, and X® will
denote the set of infinite words.

Definition 1. (Tao, 2007) A finite automata is a
quintuple (X,Y,S, 8, 1), where:

1. X is a nonempty finite set called the input
alphabet of the finite automaton;

2. Y is a nonempty finite set called the output
alphabet of the finite automaton;

3. Sis a nonempty finite set called the set of states of
the finite automaton;

4. & is a function from S X X to S called the state
transition function of the finite automaton;

5. Ais a function from S X X to Y called the output
function.
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Let A= (X,Y,S,8,A) be a finite automaton. The
state transition function 6 and the output function A
can be extended to words, i.e. elements of X!
recursively, as follows:

6(3’ 8) =S, 8(5l ||?=Oxi) = 8(6(3’ xO)' ”‘l’.:l:lxi)’}\(sf 8)
=g )\(5’ ||?=0xi)
= }\(6(51 xO)' ||?:1xi)'

where s€S, neN and ||Lyx; € X", where
[lie1%; = x1%;, ... x,,. In an analogous way, A may be
extended to X©.

Definition 2. (Tao, 2007) Let Ai = (XilYi’Si'(Si’/‘li)
for i=1,2 be two finite automata. For any
s; €S;, i=1,2, s; and s, are said to be equivalent,
denoted by s;:s,, if X; =X, and for any a € Xj,
A1(s1, @) = A,(s,, @) holds.

Suppose that k is an integer number and greater
than one and X;, X,, ..., X, be nonempty finite sets, by
[|¥_, X, we mean the cartesian product X; X X, X ... X
X ={(xq, %2, .., xp)|x; € X;,i = 1,2, ..., k}, and also
to simplify the notions we use ||¥,x; instead of
(21, X3, o) Xg)-

3. Finite k-tray Automata

Definition 3. Let ||*.,X; and ||*.,Y; be nonempty
finite sets. Then a finite automaton
A= (|, X;,1%,Y,S,8,1) is called finite k-tray
automaton.

Example 1. Suppose that S is a set of all n-ary
permutations from the set {0,1, ...,n}. Let X; = {0,1},
X,={012},....X,={01,..,k}, and Y, =Y, =+ =
Y, = {0,1} such that:

8((p1p2 - Pn), (||{'(=1xi))
= X1P2X3P4 - Xk—1PkPk+1 - P
M@1Pz P o1 X)) = Y1Y2 e Vo
Yj = X @ Pn—js1,
j=12,..,k,

where k <nand" @ " denotes the XOR operation,
i.e, componentwise addition modulo 2. Then
(% X, |15, Y3, S, 8,) is a finite k-tray automaton.

Definition 4. Let A; = (||*.,X;, 1,2, 51,81, 4,) and
A, = (11,2, 115.,Y:, 55,85, 4,) be two finite k-tray
automata and suppose that A = (||, X;, ||,V S; X
S,,6,1), where

8((s1,52), ||{'€=1xi)
= (81(s1, ||§C=1xi)' 8,(52,A1 (51, ||{'€=1xi)))'
A((s1, 820 11Ee1x) = Aa(s2, A (51, |21 %)), 51 € S, 5,
E 52-

Then A is called the k-superposition of A; and A4,.
We use C ;(4;,4,) to denote the k-superposition of
A;and A,.

Definition 5. Suppose that f, be a single-valued
mapping from (IIIL Y™ x (II,X)™ to ||,
where t and r are nonnegative integers. Then we
mean Ay, to denote a finite automaton defined by:

k j .
sy = FUTlEaay? 1zl eax? ), i = 0,1

More precisely,

A = (X 1S Yo (1S DT X (11 X)5 8,0,

where
k j k Jj k Jj k Jj k
S((lf=1yZes s Nj=1Y2e =1 XZgs wos [j=1X2e)0 1 F=1%0)
— 11k J ok j k Jj
= (=1Yo, j=1Y200 s f=1Y 0 i1
k LA j k j
||j=1x(])' ||j=1x11' R ||j=1xit+1)t
k Jj k J ok j k Jj k _
A=Y o N1V =1 X2 gy s =1 X200 I j=1%0) =
k Jj
||j=1y0
and

k J_ k Jj k j J 1k j
5=1Y0 = FUlf=1Y20 oo NF=1 Y2 =1 X0 21X ) oo

ko .0
||j=1x—t)-

Ay, is called the (t,7)-order memory finite k-tray
automaton determined by fi. If r =0, then Af, is

called the t-order input memory finite k-tray
automaton determined byf;,.

Definition 6. Let f; be a single-valued mapping from
(5 X)) to ||,Y; and gx be a single-valued
mappingﬁ‘oin (II§‘=1kZi)r X (,I(Ii-"‘:lyi)P“ to ||f2,Z; and

Ar, = iz Xo i1 Y (=08 8, Ar,) a t-order
input memory finite k-tray automaton determined
by fi and Ay, = (i, Ys 111 Zs (114 Z)7 %
(I11Y)P, 84,,2g,) @ (p, T)-order memory finite k-
tray automata determined by g, and also suppose
that

A =
k k k k
(lizaXo iz Zo (121 Z)7 X (|1 X)P+, 8, 1),
where
8 ((Hz 1Z 17 - ||z 1Z—r:||1 1x 1 || 1x—p t) || 1x0)
ko i ki
(”L 120' s ||1 1Z—r+1' - '||i=1x(l)'---:||i=1xl—p—t+1)'
P
7\’((”1 1Z 10 - ||1 1Z—r'||i=1xl—1' || 1x—p ) || 1x0) =
||i=1ZO
and
k
. [Ii 120
gk(”i:lz—l'" ”L 1Z—T'f(||l 1x0"' ||l 1X= t)
f(”l 1XLp, ||1 1XLp-1))-
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Then A’ is called the k-combination of Afk’Agk'
We use Cy(4f,,Ag,) to denote the k-combination of
Af, and Ay, .

Definition 7. A finite k-tray automaton A =
(||§‘=1Xi, ||§‘=1Yl-,5, 8, A) is said to be k-invertible with
delay t, where t being a nonnegative integer, if for any
s in S and any ||j?=1xij in||k_1X,, i=0,..,t ||;?=1xé
can be uniquely determined by A(s, ||f=0||5-‘=1xl.j), that

is, for any s,s’ in S and any ||§?=1xlj,||5-‘=1xl-’] in
[ | |
i=0,..,tA(, ||z§=o||§=1xij) = A(s, ||z§:0||§=1xiu):
gives xé = x[’)j, j=1,..,k

Definition 8. A finite k-tray automaton A =
(1, X, 115.,Y;,5,6, A) is said to be weakly k-
invertible with delay t, t being a nonnegative integer,
if for any s in S and any ||j?=1xij in||*.,X,,i=0,..,t,
||5?=1xé can be uniquely determined by s and
/1(s,||f=0||;?=1xij), that is, for any s in S and any
Woaxd erx in 1oaX, |

1= 0,..,t, A, llfzollf=1x)) = A(s, lizo =1 %),

implies that xg = x(’)j, j=1,..,k.

Definition 9. Let A= (||, X;,]|X,Y,S5,8,4) and
A = (||, 115, X;,S,6",1) be two finite k-tray
automata, and t be a nonnegative integer. Then if for
any pair (s',s) €S’ X S and for any B in (||¥,X)®
there exists By in (||.,X;)* such that |B,| = kt,
A'(s', A(s,B)) = BoB, then (s',s) is called a k-tray
match pair with delay t.

Definition 10. Let A = (||, X, ||*,Y;,S,8,1) and
A = (|L,Y, 15X, 5",8",) be two finite k-tray
automata. A' is called a k-tray weak inverse whit
delay t of A, if for any s € S there exists s' € S’ such
that (s', s) is k-tray match pair with delay t.

Definitions 3-10 are extension of compliments in
(Tao, 2007), and also the assumption of k = 1.

Theorem 1. If A is weakly k-invertible with delay t,
then there exist a finite k-tray automaton A’ such that
it is k-tray weak inverse whit delay t of A.

Proof. Since for k =1, this theorem coincides
completely with Theorem 1.4.4. of [1], so that proof
is similar to the proof of that theorem, by imposing
the suitable change.

Definition 11. Let U, ..., Uy be non empty finite sets,
and o = ||_qugj|[foqtzj o ||foqthng - in (12U
The member B = [[j_pusjlljptizj - |jolnj - Of
(1112, Uy)® is said to be the k-tray complex of a and is
denoted by B = k —TC ().

Definition 12. Let A = (||, X, ||%,Y;,S,8,1) and
A = (|5, Y, || X, S',8",2') be two finite k-tray
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automata, and t be a nonnegative integer. Then if for
any pair (s',s) € S’ X S and for any 6 in (||*, X))
there exists 0, in (||.,X;)* such that |6,| = kt,
A(s',A(s5,0)) = (k—TC (6))(k—TC (0)),$ then
(s', s) is called a k-tray complex match pair with delay
t.

Definition 13. Let A = (||, X, ||%,Y;,S,8,1) and
A" = (lie1Yo llizeXo S, 6", 1), if for any (s,s") in
SxS', (s',s) be a k-tray complex match pair with
delay t. Then A' is called a k-tray complex inverse with
delay t of A,

Definition 14. Let A = (||, X, ||%,Y;,S,8,1) and
A = (||5,Y, (|2 X:, S', 8", X)), if for any s in S there
exists s' in S', such that (s',s) is a k-tray complex
match pair with delay t, Then A’ is called a weak k-
tray complex inverse with delay t of A.

Theorem 2. Suppose that A be a finite k-tray
automaton. If A is k-invertible with delay t, then there
exists a t-order input-memory finite k-tray automaton
A’ such that it is a k-tray complex inverse with delay t
of A.

Proof. Assume that 4 = (]|, X;, [|%,Y;, S, 8,2) be k-
tray invertible with delay t. We define a single-
valued mapping f, from (|| ) to ||}.X; as
follows.

For s€S and |[*_yx, ... |I%cqx! in |IS,X; if
ko .Jy — k.
AGs, ||f=o||j=1xi) = ||f=o||j=1yi , then
k. k Jy — J oG ;
feQlf=ayls o 12190) = |j=kxg- Since A is k-tray

invertible with delay ¢, thus ||§?=1xé‘ can be uniquely
determined by A(s, ||f=0||5-‘=1xij), hence f; is well
define.

Let A" = (|I5, Y, [l Xo, (11, YD, 8,3 be the t-
order input-memory finite k-tray automaton Ag, . For

any s €S and s" = (|70, 112,97, . 192,y in
(1, YD) et AGs, 1132115 02)) = 112011%2,3/ . Now we
have: ' _ _ '
LG H2099) = fellfeadds Heylss o eyl =
G=xLe, . .
2. X(8'(s" [1fzavo ) 1=l = ,
X (Ueaddo a2y o Wy o) s

= fellea syl o ery s =

[y

3. X (&' (s izl ) [1a¥d) = _
N (er Y- W=a Y=g s Wea Yo 1219

k o J gk a0 | j
= FUS=¥d e yg o 152199) = 1j=iexd,
ko Y |1k )
4. }"(8’(5" ||€=0||j=1yi])' ||j=1yg+1) =
k J ok 4 kK oy [k )
Al((”j:lytjl ||j:1yt]—1! LR ”j:lylj)! ||j:1yg+1) =
k . ko J k .J j
feUlicadlen W=add s o i) = i e
Consequently,
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X (s A 1120l 1E1x))) = I1ZcI[i<x). Therefore
for all s €S, s' € (||, V)% (s, 5) is k-tray complex
mach pair with delay t.

Corollary 1. Suppose that A be a finite k-tray
automaton. Then A is k-invertible with delay t if and
only if there exists a finite k-tray automaton A’ such
that it is a k-tray complex inverse with delay t of A.

Theorem 3. Let A be a finite k-tray automaton. If A
is weakly k-invertible with delay t, then there exists
a finite k-tray automaton A’ such that it is a weak k-
tray complex inverse with delay t of A.

Proof. Assume that A = (||*,X;]|,Y:,S,8,1) be
weakly k-tray invertible with delay t. We consider a
single-valued mapping g, from S x (]|,Y)*? to
|liexX; satisfying the condition: For s €S and
s, o licad i s Xe 1 A 1oy =
||1€=0||5§=1yij' then gk(5'||?=t||5'€=1yij) = ||}=kx(1)- Since
A is weakly k-tray invertible with delay ¢, thus
||%-,xy can be uniquely determined by s and
)\(s,||f=0||5‘?=1xij), hence g; is well define. Let
A = (|,Y, |2 X, S',8,)') be a finite k-tray
automaton, where

_ k j k j _ k J k Jj k
S'={( s Ij=1Y21, o j=1¥2)le = 0,1, ., t,s € S, |[jog 2y, o [f21Y2e € i21Yid

8 (e, s =12y oo 1ea 2 1f190)

k Joqk j k J .
(c+ 15 |j=1Yo, Nf=1Y2e, o j=1Y2e41), f0<c <,

k Joqk j k J
(65" j=1Y0 i=1YZ1s w0 I j=1Y2e41))

Where

*

s
=8(s,k = TC (g(s, 1j=1¥0, =¥ 2y, s 11f2120))

and
k o) k .J k ]
N (68, F=1Y21r oo F=1Y2e)s HF=1Y0)
— k ok 47 ko)
= gk (S, F=1Yo j=1Y21r -0 Hj=1Y20)-
Here Sp ES and

— k Jj k j
so = (0,80, |j=1¥21) - |j=1¥2e) €S

We show that  A'(sgA(s0 1I%20l1%0x))) =
2 —elljorx!. Let  A(so, [1720l15=1%]) = 11520l 1521/
thus ' ‘

X (50, A(So, 15201 1521))) = X (50, I!?iollﬁlyij)

= X (50, y6YX (8' (50, 110 ) [1j=134)
X (8' (st ol =y 1) -
= X(s0, ||?=1_y0])7‘,(5:{' ||?=1_3’1})7\'
(53 5a DN (85, 115214 -

where
ro_ 81 I k Jj
s1 = 8'(so, [15=12%)
k j k i Kk j
= 6’((0! So» ||j:1y111 T ||j:1y1t)! ”]:13/(;)
_ k ik j k J
= (1,50, I[j=1Y0, f=1Y21s w0 Ij=1Y2e41))
— k j)
s3 = 8'(st, j=11)
— k Jk Jj k J k J
=8'((1, o, ||j=1y0, ||j=1y_1. e ||j=1y—t+1): ||j=13’1)

— k o J otk a7 k)
= (2,50, |[j=191, f=1Y0r - lf=1Y2 42D

hence if i<t then
. k j k j k j
Si, = (l’ So, ||j=1yi]_1' ||j=1yi]_2' ey ||j=1yi]—t) and
b !
St41 = 6'(st, ||j=1yt])

k j k j k j
= 8’((t' So» ||j=1ytj—1’ R ||j:1Y(;)l ||]=1ytj)

ifc =t,

(t, 8(50, k - ) ) )
re (gk(SOJ ”j’czlyt]' ||j-‘=1yt]_1, e ||§<:1y({)))’

k i 1k j k j
||j=1yt]t ||j=1yt]—1l R ||j=1y1j)
= (t, S(So,k

= TC (Iljarx)) Wi=a i fea ¥y oo 1 =131)

k i 1k j k j
= (t, St ||j=1yt]' ||j=1yt]—1t R ||j=1y1])'

hence if i>t then

— ko ] k] k
Sl’ - (t' Si—t’ ||j=1yi_1i ||j=1yi_25 ey ||j=1yi_t)- NOW we

have
k j
X (o, 17=1%)
_ k J k Jj k j
=N (0,50, lj=1Y21, s j=1¥2e) 1j=19)
_ k J k J k Jy — J
= gi(So ||j=1yo' ||j=1y—1: ey ||j=1y—t) = ||]1'=kx—t'
k j
N (st 5=191)
_ k Ik Jj k Jj k j
=N (L so j=1Yo, j=1Y21s s =1V 2pra ) HF=101)
_ k Joqk Jj k j _
= gk (So j=121 lj=1Y0s s =1V 2e41) =

Jj k JN — Jj
||Jl‘=kx_t+1' wo N (St ||j=1yt) = ||}=kx—t+t

_ J k Jj
= |[jokxd, N (stan 11¥21¥2i)

_ k J 1k j k j k Jj
=N (& s Ni=1Ye s Nf=1Vee1r - =121 ) Hf=1Y41)

k . J ko o) k o J j
= gk(sl' ||j=1yt]+1' ||j=1yt]' R ||j=1y1]) = ”}:kx{; e
1ol ko 0 N1 o
In the other words A'(s¢yj |7=1Y4) = Ilj=xXp)
p=—t—t+1,...

Corollary 2. Suppose that A be a finite k-tray
automaton. Then A is a weakly Kk-invertible
automaton with delay t if and only if there exists a
finite k-tray automaton A’ such that it is a weak k-
tray complex inverse with delay t of A.

Theorem 4. Suppose that A = (XX, YX,S,8,1) and
A’ = (YK, XK, S',8,1) be two finite k-tray automata
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and X =Y and k— TC(A(s,a)) = A(s,k — TC()) for
all seSa€X® and also k- TCQ'(s’,y)) =
XN(s',k— TC(y)) for all s’ € S,y € YX. Then A is a k-
tray complex inverse with delay zero of A’ if and only
if A’ is a k-tray complex inverse with delay zero of A.

Proof. Suppose that (s’,s) be a k — tray complex
match pair with delay zero, we prove by reduction to
absurdity that (s,s’) is a finite k —tray complex
match pair with delay zero. If for some sequence

s, 1o o € Y5 AN (S, 120l o)) =
l120l1}=x¥i” and ,

1Zollj=1y] # k —TC (I1Zollj=k¥i”), then there
exist n >0, such that ||} 0||] 1yl * I3 o||1 i

Since (s',s) is a k-tray complex match pair with
delay zero, then

N (S ol ¥y = X (8" k = TC (1ol ryi”)
=A(s"k
—TC (A(s, X' (s, |70 15= i )
=N (s, A5,k —TC X' (5", |11} 1))
=XN(sIE o||] 13’1)-

From X =Y it implies A’ (s’, Y**tk) = Xkn+k thus
there exists ||7,|]/- )i Xk (s! YRk,

Suppose A(s, k = TC (IIiollfzrxi”)) = 1ol =iy
Since (s',s) is a k-tray complex match pair with

NG ol hoeyi™) =

122

delay zero, we have

1ol %2 1x”]. In other words ||%oll¥.;x;” is in

X' (s', Y¥7+K) This is a contradiction. From symmetry
the theorem is proved.

Definition 15. Let f be a single-valued mapping
from (||X,YD™! to ||X,Z, gk be a single-valued
mapping from (J|K,Z)™? to ||};.,X;. Also, suppose

that

Ay = (|| =10 || =121, 50,80, 20), A =
iz 11,7, S,,8,,4) be two finite k-tray
automata, Ag = (||{21Z;, 1= X (1121207, 85, 25) be

an r-order input memory finite k-tray automaton
determined by Ji
A5 = (191Y 11420 (1151 Y)5 85,25) be a t-order
input memory finite k- tray automaton determined
by fi and A* = (I[i2,Y, iz Xo, (111 YD, 81" be a
(t + r)-order input memory finite k-tray automaton
determined by g, where

GGy, o 1y,

S ([ A AN ) e RGN
=01...

Then A* is called the k-tray complex combination
of A} and Aj. We use C j_.,m (41, 4p) to denote the
k-tray complex combination of A7 and A,

By considering the above definition we give the
following theorem:
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Theorem 5. Suppose that Ay be a k-tray complex
inverse automaton with delay r of A,, A} be a k-tray
weak inverse automaton with delay t of A, and

A= (|1 X, 115,Y;, S0 x 51,8,A)  such  that
A = Cy(Ay, A7). Then A* is a k-tray complex weak
inverse automaton with delay t+r of A, where
A" = Ck com(A;'Aa)-

Proof. Suppose that (sy,s;) be a state of A. Then
there exist, s; of A] such that (si,s;) is a k-tray
complex match pair with delay t. Consider
st = (s ey suppose  that
st = (||;?=1y_]1,...,||j=1y_r_t) be a state of A*. We
show that s* and (s, s;) are k-tray complex match
pair with delay r + ¢.

Let A, (51, ||;'20||?=1Zi]) = ||§io||§=1yi]- Since A] is a
k-tray weak invers of A, from the proof of Theorem
1, we get that:

and

X ,
”] 1Zp t fk(”] Iyp"- P”j:lyé—t)) b=

t,t+1,.

(1)
and since (s7,s;) is a k-tray complex match pair
with delay t, then

o ko 0y — k J
M (st A (s 1i2ol152127)) = 1172 l1j=12; - Now let
* [ ok ko 0y — J
N (™ 2ol li=1y) = 1Zollj=ixi”
(2)

Since A* is a (t + r)-order input memory finite k-
tray automaton determined by g, Definition 6
implies that:
||]1'=kx1’7}

v
= 9k(fk(||j:1yz§, e
pr=01,..,

k j k j
||j=1y;§—t)' lfk(l |j=1yz§—rl e

thus from (1) we conclude that:

J—
“] kxz’J -

kK J k J —
gk(”j:lzp—t’ T ||j=1Zp—r—t)' p=r +t..

(3) , ,
ko Jy — ko . X
If X (S0, [1Z017=1%;) = [1iZ0ll=12; , then since Ag
is a r-order input memory finite k-tray automaton
we have ||]:kx gk(”] 1Zp!" ||] 1Zp r)) p=
. But we know that Ap is a k-tray complex
inverse with delay r of AO, so for any s;=

(||} 1Z_,,, . ||]=12_1) of Ay  there
“j:kx—r' ey ||?=1?Ci1 in ok X:
o(So, ||?iol||?=1zij) = _
B((||5§=1Zirf =y ||?=1Zi1)»7\0(50: ||?°:o||§=1xi])) =
||§’°=_r||}=kxi]. Thus from the proof Theorem 1. we
have

exists

such that

1 J —
”j:kxp—r—t -
ki k J —
IeUlj=12p-pr s f1Zp )P =T+ 8,

(4)
Therefore (3) and (4) imply that: ||J kxz’,’ =

||11-=kxz],'_r_t, p =71 +t, ... Thus from (2) we get that:

1y o)),
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. )
N (T 2o llFoy)) = 152 r—el i
hand

On the other

k j k J
N20ll5=1y! = A Csu, 1152011521 2)
. .
= A (51, A0 (Sos ||?o=0||j=1xi]))

"
= M((s1, S0), ||§i0||j=1xij)-

Hence s* and (s, s;) are k-tray complex match
pair with delay r + ¢.

4. Conclusion

In this paper, we presented the notion of the
finite k-tray automata and then we obtained some
properties of it. In the time to come we introduce an
improvement on FAPKC3 Tao et al. (1997) based on
the notions and results of this paper, in which its
security is greater than before.
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